
42

Technology Development of AI Application for In-vehicle Control ECU

1. Introduction

Approximately 60 years have passed since 1956
when the term “artificial intelligence (AI)” was proposed
at the Dartmouth Conference, and the utilization of AI
is spreading worldwide as a more practical and realistic
technology. In this third AI boom which started around
2010, a number of practical systems have been realized,
and unlike the past two AI booms which lost their exits
and ended, it is expected not to end with a passing fad.

 Successful case in various industrial fields are
also being provided. For example, technology, which
substitutes AI for specialized knowledge having
difficulty being manualized or formulated simply,
has achieved the performance equivalent to or better
than that of human experts. Although its application
fields cover a lot of areas such as medical, machine
industry, electronic device, and architecture, AI shares
a number of attributes with successful cases in terms of
requirement of complicated and specialized knowledge

even in the field of automobile control. Therefore, it is
considered that the effects utilizing AI can greatly be
expected.

We, DENSO TEN Limited, have also promoted the
technology development for installing AI on a vehicle
control ECU under such circumstances. However,
AI is not supposed to be installed on an in-vehicle
microcomputer at this time, and there are a number of
issues toward the realization.

This article discusses the installation of AI on the
in-vehicle microcomputer and the integration into MBD
(Model Based Development) process which had a proven
track record in automotive control development.

2. AI Installation Issue on In-vehicle
Control ECU

As described above, AI is not supposed to be
installed on the in-vehicle microcomputer mounted on
the in-vehicle control ECU. Extremely high reliability

Development of the AI technology in recent years is remarkable, and it is said that the AI products are no longer
just a passing fad as they are becoming increasingly common even for general households.

We, DENSO TEN Limited, have also promoted the technology development for installing AI on an in-vehicle
control ECU (Electric Control Unit) under such circumstances. However, AI is not supposed to be installed on an in-
vehicle microcomputer at this time, and there are a number of issue toward the realization.

Usually, AI is being researched on the assumption that it will be installed on a parallel computing environment
such as a GPU (Graphics Processing Unit), and also the AI development libraries which are widely used follow this
policy.

Accordingly, the developed AI cannot be installed on the in-vehicle microcomputer as it is due to the processing
load and architecture gap.

Therefore, we forcused on the fact that the AI structure was a network model, and that it could be interconverted
with the block diagram used for in-vehicle code generation. In addition, a method was developed to connect
microcomputer implementation and the AI design capable of being combined with MBD (Model Based Development)
process, which had a proven track record in automotive control development.

Abstract

Technology Development of AI
Application for In-vehicle Control ECU

Natsuki YOKOYAMA Yuu MORIYAMA

43

DENSO TEN Technical Review Vol.3

is required for the in-vehicle microcomputer under
severe temperature, power consumption conditions, and
the like. On the other hand, it doesn’t have sufficient
processing performance compared to GPU (Graphics
Processing Unit) mainly used as an AI development
environment. In addition, the architecture differs greatly
from GPU specializing in parallel processing. Since
many AI development environments are optimized
for GPU, the created AI has a large gap in processing
performance and architecture, making it difficult to be
installed on the in-vehicle microcomputer.

And now, there are two following processes in AI;
“leaning” which enables to obtain a desired output for a
given input and “inference” which returns the output to
the input based on the learning results.

AI which is currently considered to be installed on
the in-vehicle microcomputer can perform “inference,”
and “leaning,” which requires extremely high processing
power, is reasonable to be implemented in the GPU
server environment with plenty of resources, or others.

Many l ibrar ies are available for the GPU
server environment, and if there is a certain level
of knowledge, the AI development can be carried
out. However, its deliverables are usually coded in
Python, which are premised on cooperation with
GPU and cannot be directly installed in the in-vehicle
microcomputer environment. In order to be installed on
the in-vehicle microcomputer, conversion to C language
where a compiler exists is necessary in some way.
Although several methods for converting Pythod code
to C language have been proposed, the problem is far
from a solution because Pythod code corresponding to
the architecture of the in-vehicle microcomputer needs
to be prepared.

Therefore, applying a block diagram with a proven
track record in the MBD process is proposed. For MBD,
the control design based on block diagram is performed
with tools such as Simulink®. This block diagram has
a function capable of simulation on PC and also capable
of conversion to C language installable on the in-vehicle
microcomputer. Thus, this enables the issues to be
narrowed down to see whether AI can be expressed
with a block diagram.

On the other hand, it is difficult to essentially solve
the gap in processing performance. There is a profound
difference in processing performance between GPU and
the in-vehicle microcomputer in specifications, because

the roles required for both are different. For that reason,
AI which is developed on GPU server environment
must be limited to an executable size by the in-vehicle
microcomputer for inference. Nevertheless, since it is
difficult to determine exactly how much processing
performance is needed for AI before the installation,
whether the processing load can be estimated in
advance becomes a focal point.

3. Mutual Conversion between
Network Model and Block
Diagram

The method of representing AI on a block diagram,
which is described in the previous chapter, is considered
in this chapter. If AI which is discussed in this article is
a deep learning, the structure is a network model. The
network model is a weighted directed graph. In addition,
a general block diagram can be regarded as a weighted
directed graph if a block value is considered as weight,
which means that network model can be converted to
the block diagram (Fig. 1). Furthermore, this conversion
is reversible because no loss of information occurs and
the reverse conversion from the block diagram to the
network model is also possible.

For example , the following network model
is considered (Fig. 2). x is an input node, y is an
intermediate node, z is an output node, weight is
represented by w, and bias is represented by b. c shall
be a constant with 1 as a value.

Block DiagramNetwork Model

Weighted Directed Graph

Fig. 1　Conversion from Network Model to Block Diagram

44

Technology Development of AI Application for In-vehicle Control ECU

If this is regarded as the weighted directed graph,
the adjacency matrix can be represented as follows
(Table 1).

If the determinant of a graph is created from the
adjacency matrix, it can be represented as follows
[Formula (1), Formula (2)].

























･･･(1)











[] ･･･(2)

Here, if x, y, z, w, and b are represented respectively
as vectors such as X, Y, Z, W, and B and plugged in 1
for c, they can be deformed as follows [(3), (4)].





[] ･･･(3)





[] ･･･(4)

The above formulas are represented as the block
diagram as below. Therefore, the network model can be
converted into the block diagram (Fig. 3).

Also , the block diagram has a function of
abstracting the control structure by hierarchization.
Usually, control designers are not interested in the
internal structure of AI. For that reason, if AI is
handled as a block with complex functions, the network
model can be hidden. On the other hand, AI developers
can proceed with development regardless of the control
if they focus only on the hidden AI block. Furthermore,
if the AI network structure is abstracted by the
hierarchization such as an input layer, a convolution
layer, and the like, its lower layers can be simplified to
a combination of simple numerical calculations. This
hierarchy is used by engineers installing software
on the microcomputer to increase speed by devising
parallelization, memory allocation, or the like. Thus,
the block diagram conversion of the network model is
not only to install AI on the in-vehicle microcomputer,
but also to separate the development process by
role, enabling the effect of clarifying the quality and
performance guarantee ranges to be expected.

Fig. 2　Example of Network Model

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 2 1 1 2 3 2

1 111 112 113

2 121 122 123

1 11 12 13

1 211

2 221

3 231

2 21

Table 1　Adjacency Matrix of Network Model

Fig. 3　Converted Block Diagram

45

DENSO TEN Technical Review Vol.3

4. Weight Saving of Network
Model and Restrictions on ECU
Installation

As for AI, which was converted to a block diagram
by the method described in the previous chapter, C
language code which is installable on the in-vehicle
microcomputer can be generated by the Simulink®
function. However, just because of this, it doesn’t mean
that the installed program can fit in the executable
processing performance. If a problem of processing
performance is identified after execution, the impact of
rework is great because it causes us to start over from
AI design. Therefore, the method for estimating the
required processing performance at the earliest possible
stage is required.

Accordingly, we propose a method to formulate a
standard calculation scale for each layer of the network
model and also define its integral result as the required
processing performance of AI. In addition to that, it is
possible to have an estimate on which microcomputer
the AI software in the design stage can be implemented
by defining the processing performance for each
microcomputer.

For example, the following calculation scale of
the convolutional layer is considered (Fig. 4). In the
calculation of the convolution layer, a feature map
is created by multiplying each element of the filter
and adding them, which is slid by the size of input.
Furthermore, a plurality of filters can be used.

To put it simply, it is clearly the case that the
calculation scale N is proportional to the input size Ir
×Ic, the filter size Fr×Fc, and the number of filters
Fn. Considering the padding [Pt, Pb, Pl, Pr] which fills

the outer periphery of the input with 0 and the stride
[Sh, Sv] at the time of sliding the filter, the following
equitation (5) can be derived.

･･･(5)

The point of this method is to be able to
quantitatively explain which layer becomes a bottleneck,
in addition to being able to estimate the required
processing performance at the AI design stage. Because
of a device-independent index, it can be easily used
regardless of a target.

The following four main methods for reducing
the AI calculation scale can be considered; Method
① Select a model suitable for an application. Method
② Narrow down the input and intermediate paths to
those that have a high impact on the output. Method
③ Suppress the calculation accuracy to the minimum
requirement. Method ④ Convert the GPU-based code
into code according to the target.
As for method ①, 	
	 There is a method of transfer leaning from AI,

which was used in the most recent previous case.
However, confirming whether the calculation scale
was optimized in the previous case is necessary.

As for method ②, 	
	 it can be further divided into two methods. One

is to select an input capable of being expected to
contribute to an output. Since knowledge of the
target application is required for this, AI installation
for ECU also become a point where the expertise as
a supplier can be demonstrated. The other is known
as sparse modeling by deleting paths with a small
amount of weight.

As for method ③, 	
	 methods such as quantization have been thought to

be effective. Although the data which is used in a
neutral network is usually floating-point numbers
of 16bit or 32bit, converting this into a fixed-point
number of 8bit or into a truth value of 1bit in an
extreme case enables the data to be lighter.

As for method ④, 	
	 the response varies depending on the speed-

up function mounted on a device to be targeted.
However, the key is usually how far calculations

Input Size: ×

Number of Filters:

Padding size: [, , ,]

Stride: [ℎ ,]
Output size: × ×

Filter Size: ×

Fig. 4　Calculation Scale of Convolutional Layer

46

Technology Development of AI Application for In-vehicle Control ECU

without any dependency can be parallelized.
Specifically, how efficient the inner products of a
totally coupled layer and a convolution layer can be
calculated, contributes to the weight saving.
The effect can be measured at the AI design

stage by methods ① to ③ out of these four methods,
which means that the formulation is possible with
the aforementioned calculation scale. On the other
hand, because the method ④ is a device-dependent
performance, it needs to be considered individually.
However, this can be resolved by preparing AI
dedicated libraries referenced by code generated from
the block diagram for each target. In other words,
this ends up clearly being separated as an issue for
engineers mounting a microcomputer.

5. Development of AI Dedicated
Library

If AI which is designed/learned on the GPU
server environment cannot structurally reduce the
calculation any further, it can be narrowed down how
to improve CPI (Clocks Per Instruction) as an issue
when implementing AI in a microcomputer. Although
various methods using a low latency command, memory
access, or the like are known, parallelism contributes
most to the performance. For that reason, considering
how far the dependency relationship of calculation can
be eliminated is necessary when developing libraries.

Which part of the calculation has the dependency
relationship can be clearly understood if the structure
of the block diagram before performing the code
generation is regarded as a directed graph. By using
this, we propose a method for examining parallelization
graphically with the block diagram.

 For example, the following block diagram is
assumed. Since blocks which are connected by arrows
clearly have the dependency relationship, a target to be
parallelized is selected for each branch (Fig. 5).

A horizontal axis represents a time axis and a
vertical axis represents the parallel number for divided
areas, showing the maximum parallelization and the
shortest time state at the time. If the parallel number
of a target is sufficient, this structure is implemented
as it is. If not, the allocation needs to be reviewed.
Accordingly, this divided area is regarded as a directed
graph and the allocation is performed in order of the
end node (Fig. 6).

Now, if the target is a dual-core CPU, the parallel
number is 2. For the sake of clarity, assuming that all
the processing from a to k have a similar processing
time, we just have to prepare boxes multiplying
the parallel number by time series and arrange the
processing so that the time series is made as short
as possible. The algorithm is as follows. Procedure ①
Organize each node in a direction toward time series so
that it shall be one node ahead of the other nodes being
directly referenced by each node. Procedure ② The “rate
being depended” which is the total number of nodes
referring to each node is required. Procedure ③ Place
the nodes to the far right of empty boxes in order of

Fig. 5　Examination of Block Diagram Parallelization

Fig. 6　Graphed Processing Dependency

47

DENSO TEN Technical Review Vol.3

the highest rate being depended. However, they shall be
placed to the left of the position organized in procedure
① (Fig. 7).

6. Conclusion

Creative efforts, which are described above, enabled
the installation process to be established while taking
the measure of the AI scale according to the target.
This method is considered to be successful in terms of
the fact that the mature MBD process can be applied
even to a new item called AI as before.

We would like to perform development trials using
this method and make continuous improvements toward
the mass production development of ECU applying AI
in future.

・Simulink® is a registered trademark of the
MathWorks, Inc.

5th layer 3rd layer 2nd layer 1st layer

a

b

c

d

e

f

g

h

i

j

k

4th layer

core0
core1

kige
f

k

kige
f

c a
d b h j

Fig. 7　Allocation Procedure for Parallel Processing

Natsuki
YOKOYAMA

Yuu
MORIYAMA

AE Business Group
Advanced System
Development Div
Engineering
Department

AE Business Group
Advanced System
Development Div
Engineering
Department

Profiles of Writers

