
43

DENSO TEN Technical Review Vol.2

1. Introduction

As for the evaluation for the development of
Electronics Control Unit for the vehicle (hereinafter
“ECU”), a simulator is used to aim to reduce the
development period and cost. The evaluation is
performed by connecting a simulator which simulates
a control target and ECU.

The simulator mounts the plant model formulated
on the physical phenomena of the control target,
and calculates based on the plant model using the
signal from ECU, which results in the vehicle state.
It is converted into electric signal, and output to
ECU by the simulator. This simulator is called HILS
(Hardware-In-the-Loop Simulator). (Fig. 1)

DENSO TEN developed HILS “CRAMAS”, and we
realized the evaluation mainly for power-train ECU
without an actual vehicle.

As for the conventional vehicle control, each
ECU individually performs controls. The recent
vehicle control in which several ECUs cooperate has

been increasing. Therefore, the system evaluation
environment in which those ECUs are evaluated needs
plural HILSs in order to simulate all ECU related to
corporation control and its control target. Thereby, we
had two problems.

Problem①： It is difficult to prepare the ECU which is
not included in the evaluation target.

Problem②： The increase of equipment investment
due to preparation of plural HILSs.

Regarding the development for both of electric/
electrical part for vehicle and software with which
a microcomputer is equipped, automotive functional
safety standard (ISO26262) has been established, and
the reliability of the tool used for the development
is also specified. Automotive Safety Integrity Level
(ASIL) for power-train ECU is high because of the
function itself. There is the following problem because
user needs to confirm reliability of the evaluation tool
by himself/herself.

As for the evaluation for the development of Electronics Control Unit (hereinafter “ECU”), a simulator is used
to aim to reduce the development period and cost. This simulator is called HILS (Hardware-In-the-Loop Simulator),
and we realize the evaluation without actual vehicle by utilizing originally developed HILS, “CRAMAS.”

The recent vehicle control in which several ECUs cooperate have been increasing. As for the establishment
of the system evaluation environment for the evaluation, there are problems such as the increase of equipment
investment and taking time for preparation of required equipment.

As automotive functional safety standard (ISO26262) has been established, user must prove the reliability
of tools used for the control development by himself/herself. As the result, it takes huge man-hour to prepare
evaluation equipment and evaluate the tools.

DENSO TEN developed a new HILS, “CRAMAS-X,” and realized the function to solve the above problems.
We introduce this “CRAMAS-X” in this paper.

Abstract

Development of New HILS
“CRAMAS-X”

Akira MARUYAMA

Hidetsugu KAWASHIMA

Tsutomu MAEDA Kyohei KIMOTO

44

Development of New HILS “CRAMAS-X”

Problem③： User must prove the right operation of
tools by himself/herself.

DENSO TEN has developed the new HILS
“CRAMAS-X” to solve these problems. We elaborate
the method to realize the function in this paper.

2. Solution to problems

We defined the requirement to be realized in
“CRAMAS-X” to solve the problems described in the
previous section.

Problem①： Difficulty of acquiring the peripheral
ECU.

⇒Requirement① Execution of ECU software under
HILS environment.

Problem②： The increase of equipment investment
due to preparation of plural HILSs

⇒Requirement② We adopt multi-core CPU with full
use to simulate the plural ECU and
the control target by one HILS.

Problem③： User must prove the right operation of
tools by himself/herself.

⇒Requirement③ Automatic diagnosis of I/O failure;
The diagnosis logic mounted on
FPGA (Field Programmable Gate
Array) confirms whether there is a
failure or not in each terminal.

3. Simulation of ECU

In order to equip HILS with the ECU software,
we extracted the function (OS, register and others)
necessary for executing the software and developed it.
In this chapter, we introduce simulation of “interrupt
handling”, which is most difficult technologically.

3.1 Interrupt handling of ECU

HILS supports fixed step handling (cycle handling)
only, and doesn’t have interrupt handling. But, an
engine ECU has two kinds of interrupt handling for
optimizing timing of ignition HILS needs to simulate
them.
・Crank ang le process ing (here ina f ter “CA

processing”)
　Hardware interrupt handling that is executed

triggered by crank angle sensor input
・Ignition processing
　Software interrupt handling that is executed

triggered by the operation result of processing for
calculating the ignition timing.

3.2 Simulation of “interrupt handling”

We unified the cycle processing and the interrupt
handling of ECU which were executed in the operation
cycle of HILS, and executed them as one cycle
processing. As the result, the execution order of ECU
software including “interrupt handling” resulted in
the same order to the actual ECU. First of every cycle
processing of HILS, “process list” (execution order) is
created after listing up all process in the operation
cycle, and we realized the interrupt handling of HILS
by the executing process in accordance with the order
of “process list”. (Fig. 2)

However, there is possibility that the execution
timing (execution order of processing) of ignition
processing changes after creating the list. Without
considering it, discrepancy of the execution order
between ECU and HILS would be caused. Therefore,
we added the information of execution time to the
process list, and in case of execution time changing,
we designed to renew the process list. As the result,
HILS realized the execution order same to the actual
ECU. (Fig. 3)

 INTERNAL USE ONLY 1/15

Fig. 1 Hardware-In-the-Loop Simulator
in

pu
t s

ig
na

l

O
ut

pu
t s

ig
na

l

Simulator

Vehicle state
・A/F value (analog signal)

・CA(Pulse signal etc.)

Control signal
・Ignition signal

・Injection signal etc.

Control target
(Vehicle and engine)

Control target model
(Simulate vehicle and engine)

Model
operation

e

ECU

Fig. 1　Hardware-In-the-Loop Simulator

45

DENSO TEN Technical Review Vol.2

3.3 Effect

We executed the simulation which simulates
the engine and the engine ECU with HILS, and
compared the engine revolution in the case where
“without simulation” and “with simulation” of interrupt
handling. “With simulation”, we confirmed the
improvement of the behavior of engine start-up and
ECU simulation accuracy compared to the actual ECU.
(Fig. 4)

4. Full use of multi-core CPU

“CRAMAS-X” adopts the high-performance multi-
core CPU which enables to be used for the industrial
PC. This aims to reduce operation load by allocating
the operational model (plant model and ECU model) to
each core of the multi-core CPU on HILS.

However, when tentatively allocating the model
with which is equipped HILS to each core, lack
of processing would happen because the selective
combination of the model and implemented evaluation
pattern may cause increase of processing load. (Fig. 5)

Therefore, it is necessary to optimize the model
allocation for each core depending on the combination
of the model and the implemented evaluation pattern.

 INTERNAL USE ONLY 2/15

1ms
処理

点火
処理

CA
処理

1ms
processing

O
pe

ra
tio

n
of

 a
ct

ua
l E

C
U ① ② ③

Operation cycle
 1.024ms

1ms
Process

-ing

CA

processing

Ignition
processing

O
pe

ra
tio

n
of

 H
IL

S

Cycle Interrupt Interrupt Cycle

Processing within operation cycle

Cycle handling

No processing

① 1ms processing

② CA processing

③ Ignition processing

processing list

Execute
in order

1ms
Process-

ing

CA
Process

-ing

Ignition
Process

-ing

Listing the processing in
operation cycle

0ms
Cycle handling

List
creating
Process

-ing

Fig. 2 Creating “Processing list”

Implement at one cycle handling

Fig. 2　Creating “Processing list”

 INTERNAL USE ONLY 3/15

1ms
処理

CA
処理

1ms
Process

-ing

① ② ③

Operation cycle
 1.024ms

1ms
Process

-ing

CA
processing

List
creating
Process

-ing

Cycle Interrupt Cycle

Cycle handling

1ms
Process-

ing

CA
Process

-ing

Ignition
process

-ing

0ms
Cycle handling

③
Interrupt

Ignition
process

-ing

Interrupt

Ignition
process

-ing

Change of ignition timing

Change execution order

List
renewing
process

-ing

No Process Execution time

① 1ms processing 0.0ms

② CA processing 0.5ms

③ Ignition
processing 0.8ms

No processing Execution tome

① 1ms processing 0.0ms

③ Ignition
processing 0.2ms

② CA
processing

0.5ms

Renew processing to 0.2ms(Reflect change of ignition timing)

Sort by
time

O
pe

ra
tio

n
of

 a
ct

ua
l E

C
U

O

pe
ra

tio
n

of
 H

IL
S

Fig. 3 Renewing “Process List”

Fig. 3　Renewing “Process List”

Fig. 4　Comparison of Engine Behavior with/without
Simulation of “Interrupt handling”

 INTERNAL USE ONLY 4/15

Actual ECU

ECU simulation

Interrupt handling: "without simulation”

Interrupt handling : "with simulation”

Delay of 54ms at the time of start-up

Maximum delay of 3ms at the time of start-up

Fig. 4 Comparison of Engine Behavior with / without Simulation of “Interrupt Handling”

Time

Time

Engine
revolution

Engine
revolution

46

Development of New HILS “CRAMAS-X”

4.1 CPU core assignment by “processing
completion judgment formula”

Each model needs to complete the processing
within the operation cycle to prevent the lack of
processing. Therefore, we devised the “processing
completion judgment formula (hereinafter “judgment
formula”)” which judges the possibility of processing
completion within the operation cycle from the total
time of processing time. (Fig. 6) When the lack of
processing occurred after the implementation of
simulation, the processing time of each model at the
occurrence of the lack of processing was measured.
Then, we realized the method to automatically
determine the CPU core assignment from the time
and judgment formula.

4.2 Effect

When the lack of processing occurred, we
confirmed no occurrence of lack of processing
by implementing re-allocation of the core and re-
simulation. (Fig. 7) Thus, we achieved to allocate the
core of model corresponding to combination of the
model and implementing evaluation pattern like this.

 INTERNAL USE ONLY 5/15

Occurrence of engine stop because of lack
of ignition and injection processing

Engine revolution

Engine ECU model
Processing load

Flag of lack of
processing

Engine
Processing load

Processing load 70%

Processing load 57％

Occurrence of lack of processing

Mount on core 1

Occurrence of engine stop

Fig. 5 Occurrence of lack of processing due to increase of processing load

Time

Total 127%

Fig. 5　Occurrence of lack of processing due to increase of
processing load

 INTERNAL USE ONLY 6/15

Generated processing timeΣ
Operation cycle

＜ 100[%]

Judgment formula

0.25 0.5 0.5

0.5 0.5 0.5

Operation cycle Processing time

Model A 1.0ms 0.50ms

Model B 2.5ms 1.25ms

0.5 1.0 1.5 2.0 2.5

Model A

Model B
0.0

Example: Allocate model A and B for the same core

2.5

1 time 2 times 3 times

1 time

processing occurs 3 times
Total1.5ms

processing occurs
one time

Total1.25ms

Model A(1.5ms)＋Model B(1.25ms)

Operation cycle of Model B(2.5ms)
= 125[%]

Judge NG

Fig. 6 Processing Completion Judgment Formula

Model A implements processing in 0.5ms every 1.0ms

Model B implements processing in 1.25ms every 2.5ms

Fig. 6　Processing Completion Judgment Formula

 INTERNAL USE ONLY 7/15

No lack of
processing

Operating

core Model
Operation

cycle
[ms]

Processing
time
[ms]

Result of
judgment
formula

Core 1

Engine 1.000 0.362 127.1％
(Lack of

processing)
Engine
ECU

1.024 0.578

Core 2 Motor 1.000 0.397 39.7％

Core ３
Motor
ECU

2.500 0.421
16.8%

Core ４
Battery 1.000 0.105

26.2％
Battery ECU 1.024 0.059

Operating

core Model
Result of

judgment formula

Core 1
Battery

76.9％Engine ECU

Core 2
Engine

75.9％Motor

Core 3
Motor ECU

23.9％Battery ECU

Core 4 (No use) 0.0％

Engine
revolution

Processing
load

Flag of
lack of

processing

No engine stop

Execute
simulation

Process time at the occurrence of lack of processing

Detect the occurrence
of lack of processing

Calculation result of core allocation Re-simulation result

Simulation properly completes
due to the calculation result of core
allocationEnable core 1, 2 and3

Calculate core allocation (threshold
80%) from all combination
(4096 different combinations)

Fig.7 Re-simulation due to Calculation of Core Allocation

Execute
re-simulation

Automatic set for
calculation result of core
allocation

Fig. 7　Re-simulation due to Calculation of Core Allocation

47

DENSO TEN Technical Review Vol.2

5. Automatic diagnoses for I/O failure

Confirming the presence or absence of I/O failure,
we conventionally prepared measurement equipment
such as an oscilloscope and others, and implemented
visual check and manual works before evaluation with
HILS.

“CRAMAS-X” mounts the automatic diagnosis
logic on FPGA with which the I/O board is equipped,
and HILS itself identifies the presence or absence of
failure of each terminal.

5.1 Failure diagnosis with FPGA logic

As for the failure diagnosis function, HILS
user instructs its start with GUI（Graphical User
Interface）of host PC, and FPGA logic implements the
diagnosis.

There is general signal of analog/digital which
is 1 channel built-in circuit for the diagnosis, and it is
separated from the circuit for original function. At the
time of the failure diagnosis, the circuit for original
function is internally connected to diagnosis circuit,
and measurement and judgment are performed while
switching the terminals by FPGA logic. (Fig. 8)

・Judgment in analog circuit
　Confirm that input/output voltage of diagnosis

circuit and input/output voltage of original function
are matched.

・Judgment in digital circuit
　Confirm that input/output logic of diagnosis circuit

and input/output logic of original function are
matched.

As for the diagnosis result, the abnormal places
are displayed on GUI per terminal in order to visually

inform user of failure place. (Fig. 9)

5.2 Effect

As for the conventional failure confirmation by
manual works, it took a few hours. However, with the
failure diagnosis function by FPGA logic, we have
already confirmed that it takes a few tens of seconds
from the instruction of diagnosis start to completion of
diagnosis.

With this function, failure diagnosis is possible
only with GUI operation, it has enabled higher
efficiency of the work to confirm the reliability of tool.

6. Conclusion

It was able to establish the system evaluation
environment with one HILS and without ECU other
than evaluation target by the development of new
HILS “CRAMAS-X”. Future vehicle control will
become huger and more complex in accordance with
advance of “connected”, “autonomous driving” and
“electrification”. We are convinced that expectation
and requirement for tool becomes higher to make
the control development efficient. We continuously
proceed with the functional development that follows
the change of control development.

Analog
input circuit

Analog
output circuit
for diagnosis

AI module
IO board

FPGA

Input terminal

【Example of analog input circuit】

Instruct diagnosis start

Respond to diagnosis result

Internal connection
at the time of
self-diagnosis only

8

・Search diagnosis start
・Display diagnosis result

Fig. 8 Failure Diagnosis

Fig. 8　Failure Diagnosis

 INTERNAL USE ONLY 8/15

Fig. 9 Diagnosis Result

Fig. 9　Diagnosis Result

48

Development of New HILS “CRAMAS-X”

・CRAMAS is a trademark of DENSO TEN Limited.

Reference
1) Kyohei Kimoto: “Development of new HILS

(CRAMAS-X)”, Society of Automotive Engineers of
Japan, Inc., Kansai branch news No.53, pp.8-9, [2018]

2) Kouji Fukuoka and others: “Development of
CRAMAS-VF”, FUJITSU TEN Technical Journal
No.59, Vol.31 No.1, pp.15-20, [2014]

Akira
MARUYAMA

Hidetsugu
KAWASHIMA

Tsutomu
MAEDA

Kyohei
KIMOTO

AE Engineering
Group
Control&Software
Engineering Dept

AE Engineering
Group
Control&Software
Engineering Dept

AE Engineering
Group
Control&Software
Engineering Dept

AE Engineering
Group
Control&Software
Engineering Dept

Profiles of Writers

