UDC 681. 3.02

Computer-Aided Program Analysis System
(CAPAS)

@® Hirotoshi Tono @® Minoru Takahashi @® Hisanori Yasugi

@® Hiromi Uchimaru

The increased use of microcomputers in electronic controllers for automobiles has caused an
increase in control program design work. Such factors as pollution regulations have made more
comprehensive control mechanism necessary, and attached greater importance to safety. These,
in turn, have contributed to the program designer’s work load.

The Computer-Aided Program Analysis System (CAPAS) we developed analyzes instructions in a
program designed in assembler, and presents them in an easy-to-understand form. Unlike a
flowchart generator, CAPAS determines the branching conditions and data to be stored in memory,
and generates flowcharts and their explanations. CAPAS enables designers with little experience
to understand program functions. Italso enables programs to be reused or developed by more than
one designer without causing that part of the program for which a designer is not responsible to
become a black box. CAPAS is expected to reduce debugging time and improve program quality.
This report presents the basic principles of CAPAS and tells how it is applied to program module

design.

1. Introduction

The application of microcomputers to electronic
automobile control began in the second half of the 1970s
with their use in engine control as part of emission
regulation. Currenty, microcomputers are used in a
number of automobile components including those re-
lated directly to automobile performance such as trans-
missions, suspensions, and brakes and those contributing
to user comfort such as air conditioners, audio systems,
and navigation tools. Microcomputers implement com-
plicated control algorithms. They are being applied to an
increasing number of fields. Manuafacturers who must
handle complicated large-scale control programs are short
of staff, however, to develop programs.

Control programs, usually of processing capability
and memory capacity, are generally written in assembler.
The introduction of higher performance microcomputers
and of larger capacity, lower price memory has made it
possible to design programs in languages such as C.
Engine control requires memory with relatively low
capacity to process many I/O signals at high speed, so it
is difficult to go completely to advanced languages.
Thus, assembler continues to play an important role.

FUJITSU TEN TECH. J., NO. 4 {1991)

Major problems of program design in assembler
consist in its incomprehensible character and many de-
bugging measures. This paper describes problems en-
tailing more efficient program development for auto-
mobile control. It also introduces a system, CAPAS,
which provides program development support by
analyzing and displaying how programs written in as-
sembler run.

2. Problems entailing efficient program
development
2.1 Effective design

Two important concepts in software production are
the “waterfall model” and “structured programming.”
Program production consists of system design based on
analysis, program design, testing, and operation. The
waterfall model expresses the overall process of program
development.

The structured programming reflects “top-down”
program development. The steps in the program pro-
duction process are divided into function blocks, with
substeps done by subdivided function blocks. A divided
program block is called a module. A modular program

61

H. Tono et al.: Computer-Aided Program Analysis System (CAPAS)

with an independent function is designed independently
of other modules. This enables joint program develop-
ment by more than one designer.

Generally, such development is used with structured
languages such as Pascal and C. The basic concepts are,
however, applicable to program development in assem-
bler, although some problems must be solved to use
procedures in automobile control. Increasingly integrated
automobile control requires real-time processing for quick
reaction and multiplex control for simultaneously im-
plementing multiple functions. It is difficult to design

control programs through structured programming be-
cause it involves program configuration arrangement
such that processing common to functions is covered by
one module and items are divided for well-timed process-
ing by priority.

Such arrangement results in modular programs be-
coming less independent. The designer must then design
programs taking into account relationship to other mod-
ules. The degree of the designer’s understanding of
modules and control specifications significantly affect

the outcome. (Figures 1 and 2).

Engine control —I Fuel injection control

Basic fuel control

Fuel calculation

Injection valve control }—

Air-fuel-ratio correction

Fuel shut-off |—

Control learning cycle |—

Other compensation

_|
__4
_4

Idling control

Others

Ignition timing control ’—

In modular programming, the function division process will basically become a program design process.
However, in engine-control, consideration is required in dividing functions into modules and allocating them.

Figure 1. Engine control program

A to D conversion

) (10-ms constant-cycle processing)

| l]

Basic mjecled fuel control

Air-fuel-ratio compensation

(Injected fuel calculation) (

Throttle opening

Compensation attenuation calculation

|

Acceleration/deceleration judgement
Initial compensation calculation []

[

l ccelerati leration comp iunl

1 Other compensation

() 4

The acceleration/deceleration compensation process is divided into a few routines. Two of these are judgement in the
A to D conversion routine and the compensation attenuation calculation in the 10-ms constant-cycle processing.

Figure 2. Program modules of compensation calculation

62

FUJITSU TEN TECH. J., NO. 4 (1991)

Documentation Basic design

Programming

Debugging

Figure 3. Estimated work allocation of program development

2.2 Debugging problems

The structured or modular programming can make
program development more efficient, but these program-
ming procedures do not verify the validity of the devel-
oped programs, which must be inspected to make sure
they meet specifications. This process is called debug-
ging. If debugging pinpoints an operation not meeting
specifications, the program must be corrected from the
upstream process on. This is repeated until specifications
are met and takes up alarge part of program development—
more than 50% (Figure 3). In automobile control, aminor
error may lead to serious trouble, which requires that
programs checking must be especially strict.

Basic debugging consists of checking how each
process described in the specification is done. The
needed stability and reliability of control, however, require
more steps. For example, specifications for the control of
an engine’s idling speed are applied only to the low
revolution region at about 1000 rpm. The actual idling
speed may exceed 6000 rpm, however, and debugging
must not leave out idling speed control or the closing of
the throttle. Even under conditions not specified, the
whole region where an engine is operated must be checked
for proper engine control.

Checking how each processing in specification is
done over the entire range, however, requires very much
work not actually covered. Joint design by a group may
complicate understanding of overall program operation
and cause unexpected problems.

2.3 Program verification (Problem solution)

The above problems originate in the overall com-
plexity of alarge-scale program. These problems mustbe
solved in such a way that programs are easier to under-

FUJITSU TEN TECH. J., NO. 4 (1991)

H. Tono et al.: Computer-Aided Program Analysis System (CAPAS)

stand. Basic program design in terms of the waterfall
model is characterized by top-down program generation,
with frequent feedback between processes. Design is
made more efficient by decreasing the amount of feed-
back or reducing cycle time. This requires a system
which can verify a top-down design process. A solution
is to indicate programming processing contents and ex-
ecution conditions relevant to required specifications.
This makes it easy to verify operation and locate prob-
lems early on.

One of largest problems is related to the difficulty of
understanding intermodule relationships. This is partly
solved by good program documentation.

A number of program development tools bnased on
personal computers and work stations are used with
advanced language. Many of these tools, called computer-
aided software engineering (CASE), are used in aims
design automation and CAD. CAPAS was developed to
make program operation easier to understand. It articu-
lates execution conditions and processing contents using
arithmetic expressions and familiar notation, eliminating
many of the drawbacks associated with top-down program
development

3. CAPAS overview

CAPAS makes programs in assembler easy to under-
stand. One instruction in assembler has no meaning for
program processing, but a combination does. In As-
sembler, a flowchart is almost equivalent to a source
listing. CAPAS provides a combination of related in-
struction words, related by arithmetic and theoretical
expressions. CAPAS analyzes a program’s contents to be
stored and branching conditions.

CAPAS also verifies control programs based on the
results of program analysis. Assembler itself detects
syntax errors (errors in notation and format) during
CAPAS detects
program errors in the contents of execution. Registering

compilation into machine language.

asequence of inspection specification conditions enables
errors in module use to be detected. This effectively
prevents the recurrence of bugs.

3.1 System configuration

A branching instruction devides a program into two
directions of movement. This means that the number of
program routines needed for program analysis equals the
square of the number of branching instructions. Program

H. Tono et al.: Computer-Aided Program Analysis System (CAPAS)

analysis must deal with an enormous amount of data,
including combinations of unreal conditions and routines
not executed depending on the condition. This requires
acomputer having as large a memory capacity as possible
and as fast processing as possible.

In our development work, we use a workstation. It
has 32M bytes of main storage and a disk capacity of
390M bytes.

CPU 68030 (25 MHz)
0s - UNIX (System V)
Main storage 32 MB

Hard disk 330 MB

Figure 4. Work station C

3.2 Principles

Assembler compiles mnemonic code into corre-
sponding machine language for the CPU. Mnemonic
code expresses basic CPU operation. Except for special
instruction systems for control, basic CPU operation is
classified into arithmetic operation, substitution, and
branching. The arithmetic operation provides data
processing for implementing program objects. The
substitution provides the entry data to be used in arithmetic
operation and the output of the results of the arithmetic
operation. Branching is the most important element for
program design. In a narrow context, a program aims at
data output. The repetition of data input and output and
of arithmetic operation leads to the acquisition of data as
the final object. Data is stored in memory and the output
register. Data is the result of program processing. Con-
ditions imposed on branching instructions until the final
data is stored make up execution conditions. Thus, the
understanding of contents to be stored and of execution
conditions enables the user to understand how a program
runs.

Analysis is broken down into @ flow structure
analysis, @ stored content of analysis, @ branching
condition analysis, and @ flowcharts.

@ Flow structure analysis

The analysis of what routes a programmed instruc-
tion takes is called flow structure analysis. Branching
occurs at absolute and relative addresses and indexes.

64

Simple branching is easily identified from code. Index
branching depends on the content of the index register, so
the value assigned to the index register must be known.
This is determined in the same way as stored contents
analysis.

@ Stored content analysis

Determining, in the order of instruction execution,
how an instruction operates requires that data changes
resulting from instruction execution and changes in the
CPU state by stored. This requires an enormous memory.
It is difficult to know when data is processed, because
data is processed where it is most convenient for the
program.

CAPAS searches for and analyzes instructions re-
lated to the stored data in the direction the reverse of
program execution. This search begins at the last stored
instruction to be analyzed. This is called trace back
analysis. It lets all needed information be gathered
efficiently. Actual analysis encounters some problems in
impossible routes and changed stacked data and the
resulting changed locations to which subroutines return.
Improved structure analysis permits the flow of program
execution to be traced correctly (Figure 5).

—— ¢ Program execution route
------- . Trace-back analysis route
Store instruction

The point where the data to
be stored is determined
Branch instruction

Starting from S, the analysis proceeds in the reverse
direction of program execution. Analysis is done effi-
ciently while collecting only the required data.

Figure 5. Stored data analysis by trace-back method

® Branching condition analysis

Branching condition analysis also uses the traceback
technique. Itis important to judge whether an instruction
is related to target information and whether all needed

FUJITSU TEN TECH. J., NO. 4 (1991)

instructions have been determined. Each instruction
owns data on how its execution affects CPU registers.
This data is used for the above judgement. Results of
execution are linked by instruction.

@ Flowcharts

Figure 6 shows sample issued results of a CAPAS
analysis. Unlike a flowchart generator, the stored data
and branching conditions are covered in the flowchart.
This makes the program flow and execution contents
fairly easy to understand. A flowchart is easier to under-

H. Tono et al.: Computer-Aided Program Analysis System (CAPAS)

stand than an Assembler listing. Each program module is
assigned a flowchart which describes the conditions of
module execution. The integrated, simplified conditions
of module execution are related to conditions for branch-
ing instructions going though routes to the module (con-
ditions of nonbranching) by logical algebraic operation.
This simplification is such that no logical value is deter-
mined but algebraic branching conditions are identified.
The simplification helps in module programming to de-
termine whether modules are located correctly.

CAPAS C MATI D) Execution condition (unconditional)

BLOOP LDD CNT 10

OMP 4 410 If CNT10<0A

BCS LBL1

CLR CNT 10 ent10=00

CLRB PORT 1, YLED 1 Clear yled 1 UD—»CbIITm

LDX #CNT 100 x=43 Clear bit 0 of PORT 1

CALL SUBCNT [| CALL (subcny) | |

CMPA #10

BCS LBL 2 If[43]1 + 1 < DA

CLR CNT100 | ent100=00 I 00—CNT1000

SETB PORT 1, YLED I Setvied] If PORT 1, set bit 0 to 1

BRA LBL 2 |
LBL 1 CMPA #5

BCS LBL3
LBL 2 CLRB PORT 1, YLED 2

If CNT10<05
BRA LBL 4
Clear bit 2 of PORT 1

LBL 3 SETB PORT 1, YLED 2
LBL 4 LDX #CNT10 Set bit 2 of PORT 1

CALL SUBCNT
BLOOPX IMP BLOOP [[CALL (subenyy]

(E Execulit?n_ condition (If CNT10 <0A)

SUBCNT LDA 0, X (unconditional)

TBCC PORT 2, YSW, SUB 10

INCA 0.X If bit 0 of PORT 2 is 0

STA
SUB 10 RET [43]+1—[43]

PRGEND

Figure 6. Output sample

FUJITSU TEN TECH. J., NO. 4 (1991)

65

H. Tono et al.: Computer-Aided Program Analysis System (CAPAS)

4. CAPAS effects

CAPAS has the following features:

@ Flowcharts permitting the easy finding of branch-
ing contradictory to intended design

@ Indication of all branching conditions enabling the
user to determine whether a program will run in
line with specifications

® Stored contents for making certain no data contra-
dicts specifications

@ Program inspection preventing inadvertent bugs

® Prevention of modules from becoming black
boxes.

Figure 7 shows the transition of debugging time in
our engine control program. Debugging time has gone
down steadily since the year module programming and
CAPAS were implemented.

5. Conclusions

Although advanced languages have begun to be
applied in the field of automobile control, their complete
adoption requires that problems in processing speed and
memory capacity be solved. Under general considerations,
it would be advantageous to be able to use languages such
as C, but a problem arises in design having to consider
machine language and CPU time. Resulting source
listings are very difficult to read, although not as hard as
those produced with Assembler. Thus, the adoption of an
advanced language has its positive and negative aspects.
The positive aspect of CAPAS is that it tentatively solves
these problems.

Currently, CAPAS can be used for only assembler
language, although its basic principles have amuch wider
application. CAPAS makes the contents of execution
easy to understand and enables CPU time to be calculated
by conditions, CAPAS will eventually show overall
program operation in the form of a tree, with the contents
of execution known from CPU output signals at the top
and how the related functions are executed lower down.
The CAPAS remains to be applied practically because
execution conditions are too strict and it runs too me-
chanical. However, we believe it has great potential in
contributing to the design of reliable programs.

1.0 —

Debug
time

0.5 —

Figure 7. Change of debug time

FUJITSU TEN TECH. J., NO. 4 (1891)

Hirotoshi Tono

Entered the company in 1979. He
has been engaged in the develop-
ment of engine-control computers,
and currently works in the System
Research and Development Depart-
ment of the Vehicle Electronics Di-
vision.

Minoru Takahashi

Entered the company in 1970. He
has been engaged in the develop-
ment of electronic equipment for
automobiles, and is now in the Re-
search and Development Depart-
ment.

FUJITSU TEN TECH. J., NO. 4 {1991)

H. Tono et al.: Computer-Aided Program Analysis System (CAPAS)

Hisanori Yasugi

Entered the company in 1985. He
has been engaged in the develop-
ment of engine-control computers,
and currently works in the Research
and Development Department.

Hiromi Uchimaru

Entered the company in 1985. She
has been engaged in the develop-
ment of engine-control computers,
and currently works in the System
Research and Development Depart-
ment of the Vehicle Electronics Divi-
sion.

67

